SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: EM Waves and Transmission Lines (23EC0407)

Year &Sem: II-B.Tech & II-Sem

Regulation: R23

Course & Branch: B.Tech. – ECE

UNIT –I <u>ELECTROSTATIC FIELDS</u>

1		What are the as andinate avetame? and write their as andinates		[2]]
1	a h	What are the co-ordinate systems? and write their co-ordinates.	[L2] [CO1]	[2M]
	b	Define position and displacement vectors?	[L2] [CO1]	[2M]
	c	Define convection current and current density.	[L2] [CO1]	[2M]
	d	Define conduction current and current density.	[L2] [C01]	[2M]
	e	Define dielectric constant.	[L2] [CO1]	[2M]
2	a)	Convert the following Cartesian points to cylindrical and spherical	[L2] [CO1]	[6M]
		coordinates:		
		i. $P(2, 5, 1)$		
		ii. R(6, 2, -4)		
	b)	Express the following points in Cartesian coordinates:	[L2] [CO1]	[4M]
		i. $P(2, 30^0, 5)$		
		ii. $Q(4, 30^0, 60^0)$		
3	a)	Define Coulomb's law and derive the force F that exists between two unlike	[L3][CO1]	[5M]
		charges.		
	b)	Point charges 1mC and -2mC are located at (3,2,1) and (-1,-1,4) respectively.	[L3][CO1]	[5M]
		Calculate the electric force on $10nC$ charge located at $(0,3,1)$.		
4	a)	Define Electric field intensity and write its expression for N point charges.	[L1][CO2]	[5M]
	b)	A Point charge of 20nC is located at the origin. Determine the magnitude and	[L3][CO1]	[5M]
		direction of the electric field intensity at point $(1,3,-4)$.		
5	a)	Explain the following	[L2][CO3]	[6M]
		i. Electric Flux density		
		ii. Gauss Law.		
	b)	What are the applications of Gauss law?	[L1][CO3]	[4M]
6	a)	A point charges 5nC and -2nC are located at (2,0,4) and (-3,0,5) respectively.	[L3] [CO1]	[5M]
		Determine the electric flux density \mathbf{D} at (1,3,-4).		
	b)	Apply Gauss Law to evaluate the electric flux density at a point P due to the	[L3][CO3]	[5M]
		point charge located at the origin.		
7	a)	Determine the Electric flux density at a point P due to infinite line charge of	[L3][CO3]	[5M]
		uniform Charge density pL C/m using Gauss law.		
	b)	Determine the Electric flux density at a point P due to infinite sheet of Charge	[L3][CO3]	[5M]
		using Gauss law.		
8	a)	Define Electric Potential. Find the electric potential for a point charge is	[L3][CO3]	[5M]
		located at origin and Write Maxwell's second equation for electrostatic field.		
	b)	Explain the maxwell's two equations for electrostatic fields.	[L2] [CO1]	[5M]
9		Derive the energy density of electrostatic field.	[L2] [CO1]	[10M]
10	a)	Derive the expression for poisson's and laplace's equations.	[L4] [CO1]	[4M]
	b)	Deduce the capacitance value of the parallel plate capacitor, and calculate the	[L4] [CO1]	[6M]
		capacitance of parallel plate capacitor having a mica dielectric of $\xi r = 6$, plate		
		area of 10 in ² , and a separation of 0.01 in.		
11	a)	Derive the expression for capacitance of co-axial cable.	[L4] [CO1]	[6M]
	b)	Find the capacitance for a 10 km long coaxial cable of $\xi r = 4$ with inner and	[L3] [CO1]	[4M]
		outer radius of 1 cm and 1.6 cm respectively.	[] [• • •]	r=1
L	I			1

1	a)	Define Biot-Savat's Law.	[L2][CO2]	[2M]
	b)	Define Ampere's circuital Law.	[L2][CO2]	[2M]
	c)	Write the expression for Ampere's Force Law.	[L2][CO2]	[2M]
	d)	Define inductance.	[L2][CO2]	[2M]
	e)	An antenna radiates in free space and $H=50 \cos(1000t-5y)ax A/m$. Calculate	[L2][CO2]	[2M]
		ω and $β$.		
2	a)	Explain Ampere's Circuital Law.	[L3][CO2]	[5M]
	b)	Determine the Magnetic Field intensity due to Infinite line Current by	[L3][CO3]	[5M]
		applying Ampere's Circuital law.		
3	a)	An infinitely filamentary wire carries a current of 2A in the +z direction.	[L3][CO1]	[5M]
		Calculate B at (-3,4,7).		
	b)	Determine the Magnetic Field Intensity due to a infinite sheet current.	[L3][CO2]	[5M]
4	a)	Define magnetic flux density and state Maxwell's Equations for static EM	[L2][CO2]	[5M]
		Fields.		
	b)	Discuss about Magnetic Vector and Scalar Potentials.	[L2][CO2]	[5M]
5	a)	Given Magnetic Vector Potential A= $-\rho^2/4$ az wb/m, Calculate the total	[L3][CO1]	[5M]
		magnetic flux crossing the $\Phi = \pi/2, 1 \le \rho \le 2m, 0 \le z \le 5m$.		
	b)	Derive the expression to find the force due to a moving charged particle in	[L3][CO2]	[5M]
		the B field.		
6	a)	Determine the force on the current element due to the magnetic field.	[L3][CO2]	[5M]
	b)	Derive the energy density of magnetostatic field.	[L3][CO2]	[5M]
7	a)	Define Faraday's law. Determine the Transformer EMF for the time varying	[L3][CO2]	[6M]
		fields.		
	b)	Why ampere's Law is In-consistent?	[L2][CO2]	[4M]
8	a)	Define Displacement Current with expression.	[L2][CO4]	[5M]
	b)	A parallel-plate capacitor with plate area of 5 cm ² and plate separation of	[L3][CO2]	[5M]
		3mm has a voltage $50\sin(10^3t)$ V applied to its plates. Calculate the		
		displacement current assuming $\varepsilon = 2\varepsilon_0$.		
9	a)	Express maxwell's equations in integral and differential forms.	[L2][CO3]	[6M]
	b)	In free space, H= 10 sin(@t-100x)ay A/m. Calculate E	[L3][CO4]	[4M]
10		Explain maxwell's equation in word statements.	[L2][CO3]	[10M]
11	a)	In free space, $E=20 \cos(\omega t-50x)ay V/m$. Calculate J_d , H.	[L3][CO2]	[6M]
	b)	State different conditions of fields on different boundary surfaces.	[L2][CO3]	[4M]

1	a)	Define skin depth.	[L1][CO4]	[2M]
	b)	What is Brewster angle?	[L1][CO4]	[2M]
	c)	What is the difference between normal incidence and oblique incidence?	[L1][CO4]	[2M]
	d)	Define critical angle.	[L1][CO4]	[2M]
	e)	What is total internal reflection?	[L1][CO4]	[2M]
2	a)	Derive the wave equations for conducting medium.	[L3][CO6]	[5M]
	b)	Derive the wave equations for perfect dielectric medium.	[L3][CO6]	[5M]
3	a)	Explain briefly about uniform plane wave.	[L2][CO4]	[5M]
	b)	What is the relation between E and H in uniform plane wave?	[L1][CO4]	[5M]
4	a)	Evaluate the wave equation in lossy dielectric medium for sinusoidal time	[L4][CO6]	[5M]
	,	variations.		
	b)	In a Nonmagnetic medium E=4 sin $(2\pi X 10^7 t - 0.8x) a_z v/m$, find ε_r , η_c	[L3][CO4]	[5M]
5	a)	Evaluate the wave characteristics of plane wave in lossless dielectric	[L4][CO6]	[5M]
	,	medium.		
	b)	In lossless medium $\eta = 40\pi$, $\mu_r = 1$, H=2 cos (ω t - z) \hat{a}_x +5sin (ω t - z) \hat{a}_y .	[L3][CO4]	[5M]
	-	Find $\boldsymbol{\varepsilon}_r, \boldsymbol{\omega}, \mathbf{E}$ for the medium.		
6	a)	Derive the characteristics of plane wave in free space.	[L3][CO6]	[5M]
	b)	Given that E=40 cos(10 ⁸ t - 3x) $a_v v/m$, Determine the direction of wave	[L3][CO4]	[5M]
	,	propagation, velocity of the wave, wave length.		
7	a)	Derive the expression for intrinsic impendence and propagation constant in a	[L3][CO6]	[5M]
	,	good conductor.		
	b)	In a medium, $\mathbf{E} = 14e^{-0.05x} \sin (2 \times 10^8 \text{ t} - 2x) \hat{a}_z \text{ V/m}$. Determine the	[L3][CO4]	[5M]
	-	followings:		
		i) The propagation constant		
		ii) The wavelength		
		iii) The speed of the wave		
8		Define polarization. Explain various types of polarization.	[L2][CO4]	[10M]
9		Evaluate the expressions for reflection coefficient and transmission	[L4][CO4]	[10M]
		coefficient by a normal incident wave for a dielectric medium.		
10		Derive the expressions for reflection coefficient and transmission coefficient	[L3][CO4]	[10M]
		for reflection of plane wave at oblique in parallel polarization.		
11	a)	Explain about surface impedance.	[L2][CO4]	[5M]
	b)	Discuss about power and Poynting vector.	[L2][CO6]	[5M]

				,
1	a)	Define Transmission line	[L1][CO5]	[2M]
	b)	List different types of transmission line	[L1][CO5]	[2M]
	c)	What is meant by loss less transmission line?	[L1][CO5]	[2M]
	d)	Write Distortion less condition.	[L1][CO5]	[2M]
	e)	What are the primary and secondary constants of transmission line?	[L1][CO5]	[2M]
2	a)	Define and explain the different types of transmission lines used in communication systems	[L2][CO5]	[5M]
	b)	A transmission line with $R = 0.1 \Omega/m$, $L = 0.3 \mu H/m$, $C = 50 pF/m$, and $G = 0.01$ S/m is operating at 1MHz. Calculate the characteristic impedance and	[L4][CO5]	[5M]
3	a)	propagation constant. With neat sketch explain about Primary and Secondary constants of transmission line.	[L2][CO5]	[6M]
	b)	Discuss about Transmission line Parameters.	[L2][CO5]	[4M]
4	a)	Derive and explain the T- and π -equivalent circuits for a transmission line.	[L3][CO5]	[6M]
	b)	A lossy cable which has $R = 25 \Omega/m$, $L = 0.1 \mu H/m$, $C = 1 pF/m$, and $G = 0$ operates at $f = 0.5$ GHz. Find the attenuation constant of the line	[L4][CO5]	[4M]
5		Deduce the equation for voltage and current at any point in a transmission line.	[L4][CO5]	[10M]
6	a)	Determine the equation for Characteristic Impedance of a Transmission line.	[L3][CO5]	[6M]
	b)	Explain the concept of infinite line transmission line?	[L2][CO5]	[4M]
7	a)	A telephone line has the following parameters: R =30 Ω/km ,G =0 L =	[L3][CO5]	[6M]
		100mH/km , C = 20μ F/m. At 1KHz, Find the characteristic impedance,		
		propagation constant and velocity of the signal.		
	b)	Explain the applications of transmission lines	[L2][CO5]	[4M]
8		A distortion less line has $Z_0=60 \Omega$ Attenuation constant = 20 mNp/m and u=0.6c	[L3][CO5]	[10M]
		(c is velocity of light) Find the primary parameters of the transmission line (R,L,C,G, and λ) at 100MHz.		
9	a)	Explain briefly about phase velocity and group velocity.	[L2][CO5]	[4M]
	b)	Find the phase velocity and group velocity for a transmission line where $L = 0.5$ μ H/m and C = 25 pF/m	[L1][C05]	[6M]
10	a)	Define a lossless transmission line. Derive the characteristics of a lossless	[L3][CO5]	[6M]
		transmission line.		
	b)	Determine the characteristic impedance and velocity for the loss less line from the following parameters. L=1 μ H/m ,C =0.25 μ F/m	[L3][CO5]	[4M]
11	a)	What is distortion less transmission line? Derive the characteristics of a distortion less line.	[L2][CO5]	[5M]
	b)	Determine the propagation constant and velocity for the distortion less line from the following parameters at 2 GHz. R=20 Ω/km , L=4 mH/km, C=0.02 μ F/km, G=0.1m U/km	[L3][CO5]	[5M]

UNIT –V <u>TRANSMISSION LINES-II</u>

				1
1	a)	Define input impedance of a transmission line	[L1] [CO5]	[2M]
	b)	Define VSWR.	[L1] [CO5]	[2M]
	c)	State the average power of a transmission line.	[L1] [CO5]	[2M]
	d)	Define open-circuited transmission line	[L1] [CO5]	[2M]
	e)	What is a matched line?	[L1] [CO5]	[2M]
2	a)	Derive the expression for the input impedance of a lossless transmission line.	[L3] [CO5]	[6M]
	b)	A transmission line of characteristic impedance 50 Ω is terminated with a load	[L3] [CO5]	[4M]
		of 100 Ω . Calculate the reflection coefficient at the load.		
3	a)	What is VSWR? How is it related to the reflection coefficient?	[L2] [CO5]	[5M]
	b)	Differentiate between short-circuited and open-circuited transmission lines.	[L4] [CO5]	[5M]
4	a)	Explain the concept of matched lines.	[L2] [CO5]	[4M]
	b)	A Certain transmission line 2m long operating at $\omega = 10^6$ rad/s has $\alpha = 8$ dB/m,	[L4] [CO5]	[6M]
		$\beta=1$ rad/m, and Z ₀ =60+j40 Ω . If the line is connected to a source of 10 $\angle 0^0$ V,		
		$Zg = 40\Omega$ and terminated by a load of $20+j50\Omega$, determine the input impedance.		
5	a)	Describe the concept of low-loss RF transmission lines.	[L2] [CO5]	[5M]
	b)	A 20 m long lossless transmission line with $Z0 = 30\Omega$ operating at 2 MHz is	[L3] [CO5]	[5M]
		terminated with a load $Z_L = 30 + j 30\Omega$. If $u = 0.6$ C on the line, find the		
		reflection coefficient, the standing wave ratio S and the input impedance.		
6	a)	What are the criteria that make a line a low-loss transmission line?	[L2] [CO5]	[5M]
	b)	How can UHF transmission lines be modelled as circuit elements?	[L4] [CO5]	[5M]
7		Explain the Smith Chart and its use in transmission line problems.	[L2] [CO5]	[10M]
8		A 50 Ω lossless transmission line is terminated on a load impedance of $Z_L = (25)$	[L3] [CO5]	[10M]
		$+j$ 50) Ω . Use the smith chart to find.		
		i) Voltage reflection coefficient.		
		ii) VSWR.		
		iii) input impedance of the line, given that the line is 0.3λ long.		
9		A 30 m long lossless transmission line with $Z_0 = 50\Omega$ operating at 2 MHz is	[L4] [CO5]	[10M]
		terminated with a load $Z_L = 60 + j 40\Omega$. If $u = 0.6$ C on the line, find the		
		reflection coefficient, the standing wave ratio S and the input impedance.		
10	```	(i) without using smith chart (ii) Using smith chart		
10	a)	Describe the working principle of a quarter-wave transformer.	[L2] [CO5]	[5M]
	b)	A 75 Ω line is to be matched to a 25 Ω load. Design a quarter-wave transformer	[L5] [CO5]	[5M]
11	\ \	and calculate its characteristic impedance.		
11	a)	A lossless transmission line with $Z_0=50 \Omega$ is 30m long and operates at 3MHz.	[L5] [CO5]	[6M]
		The line is terminated with a load $Z_L = 70 + j50\Omega$, If u=0.6c on the line. Compute		
		reflection coefficient, standing wave ratio and Input impedance, load		
	b)	impedance, using smith chart.		[4]]
	b)	Discuss the method of single stub matching.	[L2] [CO5]	[4M]